С того момента, как появилась такая профессия, как автомобильный конструктор, возникла проблема увеличения мощности моторов. По всем законам физики, мощность мотора напрямую зависит от количества горючего, что сжигается за один цикл. Чем больше горючего при этом расходуется, тем мощность выше. Но, возникает вопрос – как увеличить количество лошадиных сил под капотом своего автомобиля? Тут есть несколько нюансов.

Для того чтобы происходил процесс горения необходим кислород. Благодаря этому становится ясно, что горит нечистое топливо, а его смесь с кислородом. При этом вся смесь должна быть в определенном балансе. Например, что касается бензиновых моторов, то топливо к воздуху смешивается в пропорции 1 к 15. При этом берется во внимание состав горючего и режим его работы.

Видно, что кислорода требуется в 15 раз больше, чем самого топлива. Из этого следует, что увеличение подачи топлива ведет за собой и обязательное увеличение подачи кислорода. Зачастую двигатели самостоятельно засасывают воздух из-за разницы в давлении между атмосферой и цилиндром. Отсюда появляется и прямая зависимость между объемом цилиндра и воздуха, который попадает в него. Именно таким образом и поступала американская автомобильная промышленность, которая выпускает большие двигатели с огромнейшим расходом топлива. Но, есть ли возможность в одинаковый объем загнать, как можно больше воздуха?

Такой способ есть и его впервые изобрел Готтлиб Вильгельм Даймлер. Один из основателей компании Daimler Chrysler. Немец достаточно сильно разбирался в двигателях и уже в 1885 году понял, каким образом можно загнать туда больше кислорода. Он придумал загонять воздух в мотор при помощи специального нагнетателя, который был в виде компрессора, что получал вращение от моторного вала и благодаря этому сжатый воздух успешно загонялся в цилиндры.

Все изменилось, когда швейцарский инженер-изобретатель — Альфред Бюхи сделал сенсационное открытие. Он был главным при создании дизельного двигателя в Sulzer Brothers и он никак не мог свыкнуться с той мыслью, что двигатели были очень тяжелыми и габаритными, а мощности выдавали недостаточно. При этом он не хотел заимствовать энергию двигателя. Благодаря этому в 1905 году Альфред Бюхи получил патент на первое на планете устройство, которое было создано для нагнетания, что применяло энергию для двигателя, выдаваемую выхлопными газами. Другими словами, он создал — турбонаддув.

Данная идея была очень проста и гениальна. Выхлопные газы задают вращение колесу с лопатками точно также, как ветер вращает лопасти мельницы. Отличие только в том, что данное колесо меньшего размера, а лопастей больше. Это колесо имеет название – ротор турбины, который находится на одном и том же валу, где располагается и колесо компрессора. Поэтому турбонагнетатель можно поделить на две части, первая из которой — это ротор, а вторая – компрессор. Ротор вращается благодаря выхлопным газам, а, в свою очередь, компрессор работает, как вентилятор и благодаря этому дополнительный воздух поступает в мотор. Полностью вся конструкция имеет название турбонагнетатель или турбокомпрессор.

При этом, кислород, что попадает в мотор, необходимо дополнительно охладить, это необходимо делать для того, чтобы увеличить давление, при этом загнав в цилиндр больше воздуха. Из-за того, что сжать холодный воздух по сравнению с теплым — намного легче.

Кислород, который проходит через турбину, сам по себе нагревается из-за сжатия, а также из-за некоторых нагретых частей турбонаддува. Подаваемый в мотор воздух, охлаждается с применением промежуточного охладителя. Воздух, проходя через радиатор, отдает свое тепло в атмосферу. При этом холодный воздух плотнее загоняется в цилиндр в большем количестве.

Чем больше газа проникает в турбину, тем она чаще вращается, и соответственно больше воздуха проникает в сам цилиндр и увеличивается мощность. Стоит сказать, что эффективность именно такого метода, по сравнению с приводным турбонаддувом, в том что для того, чтобы обслужить себя, нагнетатель тратит от энергии двигателя, около 1.5%. Это обусловлено тем фактом, что энергия к турбинному ротору поступает не благодаря замедлению выхлопного газа, а за счет его охлаждения. При этом потраченная энергия повышает коэффициент полезного действия двигателя. Благодаря этому автомобиль с нагнетателем становится максимально экономичным, по сравнению с остальными похожими двигателями примерно одинаковой мощности.

Вращение ротора в турбине может быть до 200 тысяч оборотов в минуту, следующий факт относится к раскаленным газам, которые доходят до 1000 градусов по Цельсию. Из всего этого следует тот факт, что нагнетатель, который может сдержать подобные нагрузки долгое время создать достаточно сложно и дорого.

Из-за этого нагнетатель был популярен исключительно во времена Второй Мировой Войны и только в самолетах. В 50-х годах компания из Америки (Caterpillar) смогла встроить нагнетатель к тракторному двигателю, а специалисты из компании Cummins смогли создать первые турбодизельные двигатели для грузовых машин. На легковых машинах, которые получили серийное производство, такие двигатели стали появляться гораздо позже. Это произошло в 1962 году, практически сразу появилось две модели Chevrolet Corvair Monza и Oldsmobile Jetfire.

Стоит добавить, что проблематичность и высокая стоимость конструкции, не являются главными недостатками. Сама по себе эффективность работы турбонаддува, напрямую зависит от максимального числа оборотов двигателя. Из-за того, что на малых оборотах, выхлопных газов производится недостаточное количество, соответственно ротор не раскручивается на максимально возможную мощность и, как следствие, дополнительный кислород практически не задувается в цилиндры. Поэтому зачастую происходит так, что до 3 000 оборотов мотор не тянет, но уже после 4-5 тысяч оборотов, он резко «стреляет», эта проблема называется – турбоямой. При этом размер турбины напрямую зависит на ее разгон. Чем она больше, тем разгон дольше. Именно из-за этого, те двигатели, что имеют большую мощность и соответственно турбину высокого давления зачастую испытывают проблемы связанные с турбоямой. А те турбины, которые создают низкое давление, практически не имеют никаких проблем с провалом тяги, но при этом и мощность они могут поднять достаточно маленькую по отношению с первыми.

Практически полностью избавиться от такой проблемы, как турбояма может помочь схема с последовательным надувом, когда на достаточно малых оборотах мотора, работает маленький малоинерционный турбокомпрессор. Маленький – увеличивает тягу на низких оборотах, в то время, как большой включается во время, когда обороты начинают расти, вместе с давлением на выпуске. Еще сто лет назад систему последовательного наддува применяли в суперкаре Porsche 959. На данный момент же, такие системы применяются во многих марках, начиная от Land Rover и BMW, а в бензиновых моторах фирмы Volkswagen эту роль играет приводной нагнетатель.

На заводских двигателях зачастую применяют одиночный турбокомпрессор twin-scroll, в народе его называют «парой улиток». Каждая из таких улиток заполняется выхлопами, от разных цилиндров. Но, даже, несмотря на это, обе улитки подают выхлопные газы в одну турбину, в итоге максимально качественно раскручивая ее, как на больших, так и на малых оборотах.

Но зачастую все-таки можно встретить исключительно пару одинаковых турбокомпрессоров, которые параллельно друг от друга обслуживают отдельные цилиндры. Это является стандартной схемой, для стандартных V-образных турбодвигателей, где каждый блок имеет свой турбонаддув. Даже, несмотря на то, что мотор V8 компании M GmbH, который впервые был установлен на Bmw X6 M и X5 M оборудован перекрестным выпускным коллектором, позволял турбокомпрессору паре улиток получать газы выхлопа из цилиндров, которые находились в разных блоках.

Для того чтобы турбокомпрессор работал на максимуме своих возможностей, при всех диапазонах оборотов, можно поменять геометрию рабочей части. Исходя из оборотов, что производит улитка, там работают специальные лопатки и изменяется в некоторых дозволенных пределах форма сопла. Благодаря этому, мы имеем «супертурбину», которая отлично может работать во всех диапазонах оборотов. Такие схемы были продуманы и оговорены достаточно давно, но реализовать их на деле, появилась возможность лишь недавно. Стоит, при этом отметить, что изначально турбины, на которой поменяна геометрия, появилась исключительно на дизельном моторе, благодаря тому, что температура выхлопных газов, намного меньше. Что касается бензиновых двигателей, то первым был Porsche 911 Turbo.

Саму конструкцию турбодвигателя привели в максимальную комплектацию, относительно недавно и их актуальность сильно возросла. При этом сами турбокомпрессоры оказались актуальными не только, как для форсирования двигателя, но и для увеличения экономичности и экологичности выхлопа.